ο»ΏMarch 27, 2020 Artikel ini membahas persamaan garis lurus yang melalui titik pusat, melalui satu titik, melalui 2 dua titik serta memiliki gradien m. 1. Persamaan Garis Lurus yang Melalui Titik Pusat 0,0 dan Bergradien m Soal persamaan garis lurus yang berhubungan dengan melewati titik pusat O 0,0 atau dan mempunyai gradien m. Rumus Persamaan Garis Lurus PGL umum untuk masalah ini adalah y=mx Contoh soal Diketahui suatu garis mempunyai gradien -2 dan melalui titik O. Tentukan persamaan garis tersebut. Pembahasan Misalkan, m=gradien= -2 maka, y = mx y = -2x Persamaan garis lurusnya adalah y = -2x 2. Persamaan Garis Lurus Melalui Satu Titik a,b dan Mempunyai gradien m Dalam masalah ini kita mendapati soal yang lebih sulit dibandingkan soal no 1. Tetapi soal ini relatif sangat mudah. Rumus umum Persamaan Garus Lurus PGL ini adalah y-b=mx-a Contoh soal Suatu garis yang melalui titik 1,5 dan bergradien 2 Pembahasan Misalkan, gradien = m = 2. y-b = mx-a y-5 = 2x-1 y-5 = 2x - 2 y = 2x + 3 Persamaan garis lurusnya adalah y-2x-3=0 3. Persamaan Garis Lurus Melalui 2 Titik Dalam hal ini kita menemukan soal yang tidak ada gradiennya tetapi terdapat 2 titik yang dilalui. Misalkan titik pertama Aa,b dan titik kedua Bc,d, maka Rumus umum Persamaan Garis Lurus yang Melalui 2 Titik nya yaitu y-b/d-b = x-a/c-a Contoh soal Diketahui suatu garis melalui titik -1,2 dan 1,1 tentukan PGLnya Pembahasan Titik pertama -1,2 maka a=-1, b=2 Titik kedua 1,1 maka c=1, d=1 Pakai rumus umumnya dan masukkan angkanya, maka y - 2/1 - 2 = x - -1/1 - -1 y - 2/-1 = x + 1/2 Kalikan silang 2y - 2 = -1x + 1 2y - 4 = -x - 1 2y = -x + 3 atau x+2y-3=0 selesai Terimakasih telah mau membaca dan mempelajari yang saya posting tentang PERSAMAAN GARIS LURUS semoga bermanfaat Ada soal bisa dikerjakan. Jawab dikomentar nanti saya koreksi. Tentukan PGL 1. Jika diketahui m=-1 dan melalui pusat O 2. Jika m=-3/4 dan melalui titik -1,2 3. Jika melalui titik -2,1 dan -1,3
PersamaanGaris Lurus Persamaan Garis Melalui 2 Titik dimana dan adalah koordinat dari 2 titik. Persamaan Garis Melalui 1 Titik Dan Diketahui Gradien maksud dari dua buah garis sejajar adalah dua buah persamaan yang gradiennya sama. Contoh : gradien sebuah garis yang sejajar dengan 3x + 6y = 8. a = 3 , b = 6.
Kemiringan garis adalah ukuran kecuraman dan arahnya. Ini didefinisikan sebagai perubahan koordinat y ke perubahan koordinat x garis itu. Itu dilambangkan dengan simbol m. Jika dua titik x 1 , y 1 dan x 2 , y 2 dihubungkan oleh garis lurus pada kurva y = fx, kemiringannya ditentukan oleh rasio selisih koordinat y terhadap x- selisih koordinat Bagaimana cara mencari persamaan garis dari dua titik? Bentuk dua titik digunakan untuk mencari persamaan garis yang melalui dua titik. Formulanya diberikan oleh, y β y 1 = m x β x 1 atau di mana, m adalah kemiringan garis, x 1 , y 1 dan x 2 , y 2 adalah dua titik yang dilalui garis, x, y adalah sembarang titik pada garis. Penurunan Pertimbangkan garis dengan dua titik tetap B x 1 , y 1 dan C x 2 , y 2 . Titik lain A x, y adalah sembarang titik pada garis. Karena titik A, B, dan C bersamaan, kemiringan AC harus sama dengan BC. Dengan menggunakan rumus kemiringan yang kita dapatkan, y β y 1 / x β x 1 = y 2 β y 1 / x 2 β x 1 Mengalikan kedua sisi dengan x β x 1 kita dapatkan, Ini mendapatkan rumus untuk bentuk dua titik dari sebuah garis. Contoh Soal Soal 1. Temukan persamaan garis yang melalui titik 2, 4 dan -1, 2. Penyelesaian Kita punya, x 1 , y 1 = 2, 4 x 2 , y 2 = -1, 2 Temukan kemiringan garis. m = 2 β 4/-1 β 2 = -2/-3 = 2/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 4 = 2/3 x β 2 3y β 12 = 2 x β 2 3y β 12 = 2x β 4 2x β 3y + 8 = 0 Soal 2. Temukan persamaan garis yang melalui titik 4, 5 dan 3, 1. Penyelesaian Kita punya, x 1 , y 1 = 4, 5 x 2 , y 2 = 3, 1 Temukan kemiringan garis. m = 1 β 5/3 β 4 = -4/-1 = 4 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 5 = 4 x β 4 y β 5 = 4x β 16 4x β y β 11 = 0 Soal 3. Temukan persamaan garis yang melalui titik 2, 1 dan 4, 0. Penyelesaian Kita punya, x 1 , y 1 = 2, 1 x 2 , y 2 = 4, 0 Temukan kemiringan garis. m = 0 β 1/4 β 2 = -1/2 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 1 = -1/2 x β 2 2y β 2 = 2 β x x + 2y β 4 = 0 Soal 4. Temukan titik potong y dari persamaan garis yang melalui titik 3, 5 dan 8, 7. Penyelesaian Kita punya, x 1 , y 1 = 3, 5 x 2 , y 2 = 8, 7 Temukan kemiringan garis. m = 7 β 5/8 β 3 = 2/5 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 5 = 2/5 x β 3 5y β 25 = 2x β 6 2x β 5y + 19 = 0 Letakkan x = 0 untuk mendapatkan perpotongan y. => 2 0 β 5y + 19 = 0 => 5 tahun = 19 => y = 19/5 Soal 5. Temukan titik potong x dari persamaan garis yang melalui titik 4, 8 dan 1, 3. Penyelesaian Kita punya, x 1 , y 1 = 4, 8 x 2 , y 2 = 1, 3 Temukan kemiringan garis. m = 3 β 8/1 β 4 = -5/-3 = 5/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y β y 1 = m x β x 1 y β 8 = 5/3 x β 4 3y β 24 = 5x β 20 5x β 3y + 4 = 0 Masukkan y = 0 untuk mendapatkan titik potong x. => 5x β 3 0 + 4 = 0 => 5x + 4 = 0 => x = -4/5 Soal 6. Temukan kemiringan garis yang melalui titik 2, 7 dan -4, 5. Penyelesaian Kita punya, x, y = 2, 7 x 1 , y 1 = -4, 5 Dengan menggunakan rumus yang kita dapatkan, y β y 1 = m x β x 1 => 7 β 5 = m 2 β -4 => 2 = m 2 + 4 => 6m = 2 => m = 1/3 Soal 7. Temukan kemiringan garis yang melalui titik 4, -5 dan 6, 7. Penyelesaian Kita punya, x, y = 4, -5 x 1 , y 1 = 6, 7 Dengan menggunakan rumus yang kita dapatkan, y β y 1 = m x β x 1 => -5 β 7 = m 4 β 6 => -12 = m -2 => -2m = -12 => m = 6
MenentukanPersamaan Garis yang Sejajar Dengan Garis Lain dan Melalui Sebuah Titik. Penentuan gradien garis-garis yang sejajar ini adalah langkah yang harus dilakukan dalam mengetahui persamaan garis yang sejajar dengan garis lain dan melalui sebuah titik tertentu. Sehingga, konsep y - b = m(x - a) digunakan dalam kondisi ini.; Menentukan Persamaan Garis yang Tegak Lurus dengan Garis Lain dan
Setiap garis lurus yang diletakkan pada bidang koordinat Kartesius pasti memiliki suatu properti unik yang disebut sebagai persamaan equation, yaitu suatu ekspresi aljabar dengan dua ruas yang terhubungkan oleh tanda sama dengan =. Persamaan garis lurus linear equation sinonim dengan persamaan linear. Ciri-cirinya adalah setiap variabel yang muncul memiliki pangkat tertinggi 1 satu tanpa memuat perkalian antarvariabel. Berikut telah diberikan contoh dan noncontoh persamaan garis lurus. $$\begin{array}{cc} \hline \text{Contoh} & \text{Noncontoh} \\ \hline y = 3x + 9 & y = 3x^2 + 9 \\ 3x-2y = \sqrt7 & 3x-2\sqrt{y} = 7 \\ 9x = 10 & xy = 4 \\ \hline \end{array}$$Ada fakta menarik yang dapat diulas ketika membahas garis lurus pada bidang koordinat Kartesius, yaitu setiap dua titik berbeda dapat dibuat garis lurus. Dengan kata lain, untuk menggambar garis lurus, kita hanya perlu dua titik, kemudian menghubungkannya. Persamaan garis lurus umumnya berbentuk $ax + by + c = 0$ atau $y = mx + c$ dengan $m$ = gradien atau $ax + by = d.$ Perhatikan gambar berikut. Gambar di atas menunjukkan garis lurus dengan persamaan $ax + by + c = 0$ yang melalui dua titik, yaitu titik biru dengan koordinat $x_1, y_1$ dan titik merah dengan koordinat $x_2, y_2.$ Nah, yang menjadi pertanyaan adalah bagaimana cara mencari persamaan tersebut menentukan nilai $a, b, c$? Mungkin para guru di kelas sudah memberitahu dan menjelaskan bahwa persamaan garis lurus yang melalui dua titik tertentu, misalnya $x_1, y_1$ dan $x_2, y_2$ adalah $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Selanjutnya, kita tinggal melakukan βkali silangβ dan sedikit perhitungan aljabar. Oleh karena itu, kita sebut saja cara ini dengan metode aljabar. Baca Soal dan Pembahasan β Gradien dan Persamaan Garis Lurus Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 2, 3$ dan $x_2, y_2 = 5, 2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{2-3} & = \dfrac{x-2}{5-2} \\ \dfrac{y-3}{-1} & = \dfrac{x-2}{3} \\ 3y-3 & = -x-2 \\ 3y-9 & = -x+2 \\ x+3y & = 11 \end{aligned}$$Jadi, persamaan garisnya adalah $x+3y=11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = -1, 3$ dan $x_2, y_2 = 3, -4.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-3}{-4-3} & = \dfrac{x-1}{3-1} \\ \dfrac{y-3}{-7} & = \dfrac{x+1}{4} \\ 4y-3 & = -7x+1 \\ 4y-12 & = -7x-7 \\ 7x+4y & = 5 \end{aligned}$$Jadi, persamaan garisnya adalah $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Aljabar Dua titik yang dilalui garis adalah $x_1, y_1 = 3, 0$ dan $x_2, y_2 = -1, -2.$ $$\begin{aligned} \dfrac{y-y_1}{y_2-y_1} & = \dfrac{x-x_1}{x_2-x_1} \\ \dfrac{y-0}{-2-0} & = \dfrac{x-3}{-1-3} \\ \dfrac{y}{-2} & = \dfrac{x-3}{-4} \\ \cancelto{2}{-4}y & = \cancel{-2}x-3 \\ 2y & = x-3 \\ x-2y & = 3 \end{aligned}$$Jadi, persamaan garisnya adalah $x-2y = 3.$ Bagi orang yang baru mulai mempelajari aljabar atau belum menguasai aljabar dengan baik, langkah pengerjaan yang ditunjukkan di atas mungkin akan terasa sulit dan membingungkan. Berdasarkan pengalaman pribadi, saya sendiri sering menjadi saksi bahwa banyak siswa setingkat SMP kelas 8 ke atas yang kesulitan melakukan operasi aljabar untuk menentukan persamaan garis lurus yang melalui dua titik seperti ini. Usut punya usut, ternyata ada cara lain yang βkelihatannyaβ lebih menyenangkan mata dibandingkan cara di atas. Kita bakal sebut ini sebagai metode skematik karena perhitungannya nanti memang menggunakan semacam skema. Perhatikan kembali rumus sebelumnya. $$\boxed{\dfrac{y-y_1}{y_2-y_1} = \dfrac{x-x_1}{x_2-x_1}}$$Apabila kita menerapkan operasi aljabar pada persamaan tersebut, kita akan peroleh persamaan lain yang ternyata memunculkan ide baru tanpa melibatkan perhitungan aljabar yang sulit. $$\begin{aligned} y-y_1x_2-x_1 & = x-x_1y_2-y_1 \\ x_2y-x_1y-x_2y_1+\cancel{x_1y_1} & = xy_2-xy_1-x_1y_2+\cancel{x_1y_1} \\ x_2-x_1y & = y_2-y_1x + x_2y_1-x_1y_2 \end{aligned}$$Persamaan terakhirlah yang menjadi asal muasal munculnya metode skematik seperti berikut. Setelah dikurangi, langkah terakhir adalah tinggal menyisipkan variabel $y$, tanda sama dengan, dan variabel $x$ sehingga persamaannya menjadi $$\boxed{x_1-x_2\color{red}{y =} y_1-y_2\color{red}{x} + x_1y_2-x_2y_1}$$Masih bingung? Perhatikan beberapa contoh berikut supaya lebih paham. Saya menunggu kalimat βOh, begitu rupanya!β. Quote by Napoleon Hill Most great people have attained their greatest success just one step beyond their greatest failure. Contoh 1 Tentukan persamaan garis lurus yang melalui titik $2, 3$ dan $5, 2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-3y = x-11$ atau dapat disusun menjadi $x+3y = 11.$ Contoh 2 Tentukan persamaan garis lurus yang melalui titik $-1, 3$ dan $3, -4.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-4y=7x-5$ atau dapat disusun menjadi $7x+4y=5.$ Contoh 3 Tentukan persamaan garis lurus yang melalui titik $3, 0$ dan $-1, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y = 2x-6$ atau dapat disederhanakan dan disusun menjadi $x-2y=3.$ Contoh 4 Tentukan persamaan garis lurus yang melalui titik $10, -1$ dan $-1, 10.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $11y = -11x + 99$ atau dapat disederhanakan dan disusun menjadi $x+y=9.$ Contoh 5 Tentukan persamaan garis lurus yang melalui titik $4, 7$ dan $-2, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $6y = 10x + 2$ atau dapat disederhanakan dan disusun menjadi $5x-3y=-1.$ Contoh 6 Tentukan persamaan garis lurus yang melalui titik $0, 0$ dan $-4, -7.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $4y=7x$ atau dapat disusun menjadi $7x-4y=0.$ Contoh 7 Tentukan persamaan garis lurus yang melalui titik $3, 5$ dan $-9, -3.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $12y = 8x + 36$ atau dapat disederhanakan dan disusun menjadi $2x-3y=-9.$ Contoh 8 Tentukan persamaan garis lurus yang melalui titik $7, -3$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $10y = -x-23$ atau dapat disusun menjadi $x+10y=-23.$ Contoh 9 Tentukan persamaan garis lurus yang melalui titik $-1, -4$ dan $7, -5.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $-8y = x + 33$ atau dapat disusun menjadi $x + 8y = -33.$ Contoh 10 Tentukan persamaan garis lurus yang melalui titik $-3, -4$ dan $-3, -2.$ Metode Skematik Dari hasil pengurangan di baris terakhir, kita peroleh persamaan garisnya, yaitu $0y = -2x-6$ atau dapat disederhanakan dan disusun menjadi $x=-3.$ Bagaimana? Metode manakah yang lebih enak untuk dipakai? Semuanya tergantung selera masing-masing, tetapi intinya kita tahu bahwa kreativitas dan rasa βkepoβ kita terhadap rumus yang lazim ternyata menghasilkan sesuatu yang βmempermudahβ kita, sama seperti penggunaan mnemonik dalam proses menghafal.
Bagaimanacara menemukan persamaan elipsnya?, silahkan teman-teman baca pada artikel "cara menemukan persamaan elips". Kurva elips memiliki dua bentuk tergantung dari sumbu mayornya Sumbu mayor (garis AB) adalah sumbu yang melalui titik fokus $ F_1 $ dan $ F_2 $. Panjang sumbu mayor $ = 2a $. -). Sumbu minor (garis CD) adalah sumbu yang
Kalau kamu ingin belajar persamaan garis melalui dua titik secara lebih mendalam, coba simak penjelasan yang ada di sini. Setelah menerima materi, kamu bisa langsung mempraktikkannya dengan mengerjakan latihan soal yang telah kami sini, kamu akan belajar tentang Persamaan Garis Melalui Dua Titik melalui video yang dibawakan oleh Bapak Anton Wardaya. Kamu akan diajak untuk memahami materi hingga metode menyelesaikan soal. Nantinya, kamu bisa mengerjakan latihan soal interaktif dalam 3 tingkat kesulitan mudah, sedang, sukar. Maka dari itu, kamu bisa langsung mempraktikkan materi yang didapatkan. Sekarang, kamu bisa mulai belajar dengan 2 video dan 3 set latihan soal yang ada di halaman ini. Apabila materi ini berguna, bagikan ke teman atau rekan kamu supaya mereka juga mendapatkan manfaatnya. Kamu dapat download modul & contoh soal serta kumpulan latihan soal lengkap dalam bentuk pdf pada list dibawah ini Kumpulan Soal Mudah, Sedang & Sukar
Metodeini menyelesaikan masalah dengan menentukan titik perpotongan dua garis lurus yang merupakan tampilan dari kedua persamaan linear dua variabel. Berikut ini adalah langkah-langkah penyelesaian SPLDV dengan metode grafik: 1. Tentukan titik potong salah satu persamaan linear dengan sumbu X atau sumbu Y. 2.
β Garis lurus biasanya melewati dua titik pada koordinat kartesius. Bagaimana cara menemukan persamaan garis yang melalui dua titik? Untuk mengetahuinya, berikut adalah soal dan jawaban mencari persamaan garis yang melalui dua titik! Contoh soal 1 Carilah persamaan-persamaan garis yang melalui pasangan titik-titik berikut. 2, 3, 4, 7 β3, 11, 4, β10 Jawaban Misalkan 2, 3 adalah x1, y1 dan 4, 7 adalah x2, y2. Untuk menentukan persamaan garisnya, terlebih dahulu kita harus mencari nilai kemiringannya a.a = y2 β y1/x2 β x1 = 7 β 3/4 β 2 = 4/2 = 2Setelah mengetahui nilai a, kita harus mencari nilai b-nya. Caranya adalah dengan memasukkan nilai x1 dan y1 ke dalam bentuk umum fungsi = 1/2x + b3 = Β½ 2 + b3 = bSehingga, persamaan garisnya adalah y = 2x + 3. Misalkan β3, 11 adalah x1, y1 dan 4, β10 adalah x2, y2.a = y2 β y1/x2 β x1 = -10 β 11/4 + 3 = -21/7 = -3y = ax + by = -3x + b11 = -3 -3 + b11 = 9 + bb = 11 β 9 = 2Sehingga, persamaan garis yang melewati titik β3, 11, 4, β10 adalah y = -3x + 2. Baca juga Soal dan Jawaban Menemukan Persamaan Garis Contoh soal 2 Carilah persamaan garis yang melalui titik β2, 4 dan titik 5, β3. Jawaban -2, 4 = x1, y15, -3 = x2, y2 Mencari nilai aa = y2 β y1/x2 β x1 = -3 β 4/5 + 2 = -7/7 = -1
menentukanpersamaan garis lurus melalui titik asal dan titik tertentu; 8. menentukan gradien suatu garis; 9. menentukan persamaan garis lurus dengan gradien tertentu dan melalui GARIS Misalkan diketahui dua titik ( T1, U1) dan ( T2, U2) dengan T1β€ T2. Jika titik C adalah titik tengah pada Μ
Μ
Μ
Μ
maka akan kita peroleh koordinat-koordinat
Duagaris lurus hanya memiliki satu titik perpotongan, dan dua garis yang tidak pernah saling menyentuh tidak memiliki titik perpotongan. Berikut cara-cara mengenalinya: Satu jawaban: Faktor-faktor persamaan soal adalah dua faktor yang identik ( (x-1) (x-1) = 0). Ketika diubah menjadi rumus kuadrat, suku akar kuadratnya adalah.
Carapaling mudah menggambarkan persamaan garis lurus adalah dengan mencari nilai x dan nilai y secara acak. Biasanya menggunakan titik dengan nilai x = 0 dan nilai y = 0. Sobat hanya memerlukan dua titik untuk menggambarkan sebuah persamaan garis lurus. Berikut contohnya: Gambarlah garis dari persamaan x + 2y = 10
jfeAG. z98en0u3dn.pages.dev/159z98en0u3dn.pages.dev/294z98en0u3dn.pages.dev/69z98en0u3dn.pages.dev/956z98en0u3dn.pages.dev/666z98en0u3dn.pages.dev/766z98en0u3dn.pages.dev/438z98en0u3dn.pages.dev/282
persamaan garis melalui dua titik